About the project
IRISS aims at the development and operation of an innovative and sustainable greenhouse type construction that will use its roof for the production of irrigation water using the solar desalination and simultaneous exploitation of the produced water in agricultural activity which will be developed inside and outside the greenhouse.
The idea concerns the development of a greenhouse facility with double skeleton, triple cover material and insulation. The outer skeleton has a single plastic cover polyethylene, transparent with high light transmittance (over 93%). The inner skeleton is covered by two sheets of plastic polyethylene opaque, each sheet having one side white and one black. The outside sheet has the black side up and the inside depending on the use of the interior or the white either black. Between these two sheets of plastic, there is glass fiber insulation.
At first, the seawater or brackish water passes from an exchanger, where it is preheated, and then dispersed in large numbers droplets in a polyethylene tube for evaporation. This tube is located in the gap between the double skeleton where the temperature rise due to solar radiation is achieved. In addition, the polyethylene tube, where the droplets evaporate, has holes for collecting and drainage of the deworm (not vaporized) at specific points. Steam created into the polyethylene tube, is sucked by a vacuum pump at the end of the tube, and is fed to the above-mentioned alternator where it is condensed after it has given its feed water its heat.
Vertical section of the roof of the greenhouse
Αρχικά, το θαλασσινό ή υφάλμυρο νερό περνάει από εναλλάκτη, προθερμαίνεται και διασπείρεται σε μεγάλο αριθμό σταγονιδίων εντός σωλήνα πολυαιθυλενίου για την εξάτμιση τους
Αύξηση της θερμοκρασίας στο εσωτερικό του σωλήνα λόγω της ηλιακής ακτινοβολίας
Κάθετη τομή της οροφής της θερμοκηπιακής κατασκευής
Ο σωλήνας πολυαιθυλενίου διαθέτει οπές για τη συλλογή και αποχέτευση του αλμόλοιπου (που δεν εξατμίζεται) σε συγκεκριμένα σημεία
Ο ατμός, που δημιουργείται εντός του σωλήνα πολυαιθυλενίου, αναρροφάται από μια αντλία που βρίσκεται στο τέλος του σωλήνα και οδηγείται στον εναλλάκτη όπου και συμπυκνώνεται, αφού προσδώσει στο νερό της τροφοδοσίας τη θερμότητα του
Research objects
  • The technical parameters involved in evaporation and their optimization, the characteristics of the solar evaporator components (cover materials, evaporation surface, nozzle / dispersion characteristics (operating pressure, flow rate, drop diameter), number and geometry of the pipes.

  • The technical components of the system, the water pipelines, the methods of transport and treatment of the brackish water.

  • The heat exchanger system (alternator dimensioning, cleaning methods, etc.).

  • The environmental footprint of the facilities compared to existing systems.

  • Create a low cost, eco-friendly and flexible product
Expected results
Innovative greenhouse construction with built-in solar desalination system.
Irrigation water production and development of agricultural activity in arid areas, especially in isolated areas.
Production of irrigation water at reduced installation and operating costs compared to other desalination systems.
Reducing the ecological print.
Skip to content